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The Olami-Feder-Christensen model describes a limiting case of an elastic surface that slides on top of a
substrate and is one of the simplest models that display some features observed in actual seismicity patterns.
However, temporal and spatial correlations of real earthquakes are not correctly described by this model in its
original form. I propose and study a modified version of the model, which includes a mechanism of structural
relaxation. With this modification, realistic features of seismicity emerge, which are not obtained with the
original version, mainly: aftershocks that cluster spatially around the slip surface of the main shock and follow
the Omori law, and averaged frictional properties similar to those observed in rock friction, in particular the
velocity-weakening effect. In addition, a Gutenberg-Richter law for the decaying of number of earthquakes
with magnitude is obtained, with a decaying exponent within the range of experimentally observed values.
Contrary to the original version of the model, a realistic value of the exponent appears without the necessity to
fine tune any parameter.
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I. INTRODUCTION

The interest to describe the seismic phenomenon as origi-
nated in instabilities of dynamical systems has steadily in-
creased in the last years. Although simplistic models cannot
be expected to reproduce the full phenomenology observed
in real seismicity, it has become clear that a relatively fair
understanding of some prominent features can be obtained
using rather simple models. Historically, the first model of
this type is the one proposed by Burridge and Knopoff �BK�
�1�. They considered a chain of elastically interacting rigid
blocks �assumed to model portions of a tectonic plate� that
are forced to slide onto an underlying surface. In order to
obtain instabilities during motion that can be associated to
earthquakes, a crucial ingredient in this model is the use of a
“velocity-weakening” friction force between blocks and sub-
strate, i.e., a friction force that decreases as the relative ve-
locity increases. This was shown to generate instabilities that
produce abrupt and potentially large rearrangements of the
blocks �the “earthquakes”� �2�. The model is considered to
be a paradigmatic case of self-organized criticality �3,4�,
since the number of earthquakes N within a fixed magnitude
interval decays �albeit in a limited magnitude range� expo-
nentially with the magnitude M of the events, reproducing
the empirical Gutenberg-Richter �GR� law �5�, namely,
N�M��10−bM. For actual earthquakes, the exponent b is usu-
ally found to be close to 1.

A number of modifications and generalizations have been
proposed to this model over the years. I will concentrate in
the work of Olami, Feder, and Christensen �OFC� �6� who
proposed a cellular automaton model based on the BK
model, which has quite remarkable properties and is simple
enough to be simulated very efficiently �7�. The OFC model
considers a set of real valued variables ui, where i indicates
the position in a two-dimensional lattice. ui is the force that
the substrate exerts on the block at position i and it repre-
sents the local stress between the sliding plates. The system
is driven by uniformly increasing the values of ui with time

at a rate V, simulating the tectonic loading of the plates.
Every time one of the variables ui reaches a maximum pin-
ning force �ordinarily set to a uniform, dimensionless value
of 1�, the local stress ui is relaxed by setting it to zero �thus
the local stress drop �u is equal to 1�. The local stress drop
produces a stress increase onto neighbor sites according to
uj→uj +�, where j indicates a neighbor site to i. The value
of � can vary between 0 and �c�1 /z, with z being the
number of neighbors in the lattice. The case �=�c is called
the conservative case, whereas ���c are nonconservative
cases. A discharge event can produce the overpassing of the
maximum local stress on one or more than one neighbor and
in this way, a large cascade can be generated. This cascade is
called an event and is identified with an individual earth-
quake �note that the full cascade is assumed to occur at con-
stant time, namely, earthquakes are instantaneous�. The size
S of an event is defined as the sum of all discharges �u
that compose the event and the magnitude is defined as
M = 2

3 log10 S, so to match �up to an additive constant� the
usual definition used in geophysics �8�.

The OFC model is typically simulated using open bound-
ary conditions. In the case of periodic boundary conditions,
the model exhibits a strong global synchronization originated
in the spatial homogeneity. The OFC model displays an ex-
ponential decay of number of events as a function of magni-
tude compatible with a GR law. The b value is however not
universal, but depends on the value of �. Realistic values of
b are obtained for ��0.2 �with z=4�. A cutoff at large event
sizes exists that moves progressively to larger values for
larger system sizes.

After its introduction, the OFC model has been studied in
great detail, trying to extract from it the characteristics that
are observed in actual seismicity patterns. Although the find-
ing of a GR decay law is a goal of this kind of model, the
spatial and temporal clusterings of earthquakes observed in
real seismicity are certainly not reproduced by the OFC
model �see below the discussion about aftershocks in the
OFC model�, as well as they were not reproduced either by
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the model of BK. I refer in particular to the phenomenon of
aftershocks, which has a partial quantitative description
through the empirical Omori law �9,10�. This law states that
the number of earthquakes in excess of its average value
after a large event decays as �1 / �t+c�p, where t is the time
from the main shock, p is an empirical exponent, and c is a
time constant in the range between minutes and hours. Usu-
ally, the value of p is found to be close to 1, although other
values and even other functional forms have also been
proposed �11�.

My contribution here is to modify the original OFC model
in a way that allows for the existence of some kind of struc-
tural relaxation �12� or aging in the system. This modifica-
tion produces the appearance of correlated events in the dy-
namical evolution, in particular aftershocks, generating
earthquake sequences that qualitatively and quantitatively re-
semble real ones. In addition, the modified model will be
shown to possess average friction properties that are compat-
ible with those experimentally observed in rock friction stud-
ies �13�. In particular, I obtain the effect known as “velocity
weakening,” namely, a reduction of the average friction force
when the sliding velocity is increased, which is known to
occur in rock friction and plays a crucial effect in the trig-
gering of earthquakes �8�. Velocity weakening has been de-
scribed phenomenologically in terms of the so-called rate-
and-state equations �14�, but no detailed quantitative theory
exists for it.

In the next section, I introduce and justify the modifica-
tions that are made onto the OFC model. Results are pre-
sented in Sec. III. In Sec. IV I show the dependence of some
of the results on the kind of relaxation mechanism used.
Finally, in Sec. V, I give some qualitative interpretations of
the appearance of aftershocks, summarize, and conclude.

II. MODIFICATIONS TO THE MODEL
AND THEIR JUSTIFICATION

Two modifications will be implemented onto the original
OFC model. They are the existence of random thresholds
and structural relaxation. I now present and justify them
separately.

�1� Random thresholds. In the OFC model, the maximum
values that the variables ui can withstand are set to a constant
value of 1. Having in mind a realistic situation of a hetero-
geneous fault, with the constitutive materials having different
properties at different positions, it becomes natural to con-
sider a case in which the threshold values are not constant
but have some spatial variation. In concrete, the values of the
local thresholds will be called ui

th and I draw them from a
Gaussian distribution centered at u0, with standard deviation
�. Each time ui overpasses the local threshold ui

th, ui is up-
dated to a new value. In concrete, I will use the update rule
ui→ui−1, i.e., I maintain �as in the original model� the pre-
scription of a unitary local stress drop. Upon this drop of the
local stress, the values of u on neighbor sites are updated as
before, namely, uj→uj +�, for j neighbor to i.

Every time ui is updated, a new value is assigned to the
local threshold ui

th, taken from its original Gaussian distribu-
tion. This prescription is justified on the same physical argu-

ments as before, since the sliding pieces can reasonably be
thought to find different maximum strengths as sliding pro-
ceeds. I found that even a small value of � �about 0.05u0� is
sufficient to qualitatively modify the behavior of the OFC
model �see results below�. This means that the OFC model is
not robust with respect to this perturbation and since random
variation of parameters is experimentally expected, the OFC
model can probably be considered as an interesting dynami-
cal system, but not as a realistic model of the seismic phe-
nomenon. In the language of renormalization-group theory,
we can say that fluctuations in the threshold values are “rel-
evant” variables �15�.

�2� Structural relaxation. The existence of internal tempo-
ral effects in sliding systems is well established. Dieterich
and Kilgore �16� were the first to provide direct evidence that
solid bodies in contact experience plastic relaxation that in-
duces the increase of real contact area over time. In turn, this
increase of contact area is intimately related to the velocity-
weakening effect and thus it affects directly the characteris-
tics of the seismic phenomenon �8,17�. Thus, the second
modification I make on the OFC model is the inclusion of
these relaxational processes �18�. In order to justify the par-
ticular way in which relaxation will be introduced, I note that
the plastic processes I am trying to model always produce a
reduction of the total energy E stored in the system. This
energy will be dependent of the values of the ui, namely,
there will be some functional form E�ui�. The proposed re-
laxation mechanism causes a progressive reduction of this
energy through a standard first-order relaxation equation of
the form �20�

dui

dt
= R��2�E

�u
	

i
, �1�

where �2 is the discrete Laplacian on the underlying square
lattice, i.e., ��2f�i=
 j f j −4f i, where j stands for the four
neighbor sites to site i and lattice parameter is taken as the
unit of length �see also the discussion in Sec. IV�.

In order to have a concrete realization, we need to specify
the form of the function E�ui�. Whereas in principle, this can
be done by a detailed derivation of the OFC model from an
elastic model, at present I will take the view of proposing the
simplest form for the relaxation equation. This is obtained by
taking E�
iui

2 and it gives

dui

dt
= R��2u�i + V , �2�

where the last term comes from the external driving and a
constant has been absorbed in the value of R. In the last
section, I will discuss the possibility of other analytical
forms of the relaxation mechanism and the effect on the re-
sults obtained.

This mechanism �12,21� produces �for V=0� the progres-
sive uniformization of the local forces ui on a time scale set
by the relaxation parameter R. Thus, the relevant parameter
of the dynamics of the system will be the ratio R /V, which
measures the competing effect between relaxation and the
global driving.
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Since I found that in the presence of nonuniform thresh-
olds and for sufficiently large system sizes, the results be-
come independent of the boundary conditions used, I chose
to work always with periodic boundary conditions to reduce
size effects as much as possible. Note also that the dynamics
of the model is independent of the average value of the
thresholds u0, since a change in this value produces only a
rigid change of all ui. I will formally take u0=1, having in
mind that a different value of u0 can be considered if we
want, for instance, to maintain all ui variables to be positive
at all times, as its physical interpretation would suggest. In
addition, very small events �those that span ten or less lattice
points� are systematically cut off from the results, since they
are spuriously dependent on the underlying numerical lattice.

III. RESULTS

Even in the case R=0, there are qualitative differences
between the results obtained with the present model �that
uses random thresholds� and with the OFC model. In Fig. 1,
we see results for this case �R=0� for different values of �
and �. The decaying exponent of the number of events with
magnitude �Fig. 1�a�� is b�0.37, independently of the pre-
cise values of � and �. There is a cutoff at large event sizes

that moves toward infinity as �→�c=0.25. This is in con-
trast with the results in the OFC model, where the b expo-
nent depends on � and the cutoff depends on system size,
and suggests that the physics of the model presented here is
very different from that of the OFC model. Actually, the
behavior I find for R=0 is consistent with the case of an
elastic interface driven on top of a disordered pinning poten-
tial �22�. In particular, the value of b�0.37 compares very
well to the avalanche size exponent for an elastic interface
	�1.25 �as defined for instance in �23�, note that 	=1
+2b /3�.

An inspection of the spatial and temporal sequences of
epicenters �i.e., the triggering positions� of the events pre-
sented in Figs. 1�b� and 1�c� reveals no obvious correlations
of any type. The conclusion from here is that the model with
random thresholds and without relaxation �R=0� is qualita-
tively different from the OFC model, but also far from being
realistic in simulating seismicity.

Results are qualitatively different when R is different
from zero. The magnitude-frequency distribution for increas-
ing values of R /V is shown in Fig. 2�a� for a fixed value of
�=0.246. As R /V increases, the b value increases �Fig. 2�a�,
inset�. Most remarkably, b seems to reach a well-defined
value �b�1.0� when R /V is large, which is independent of �
and � �see Fig. 2�b�� and which is comparable to actual
values observed in earthquakes. Figure 2�b� also shows that
the large size cutoff of the GR plot is mainly governed by the
value of �, moving toward infinity as �→0.25. The appear-
ance of a realistic b value is encouraging since it is obtained
without any tuning of parameters in the model �beyond the
fact of R /V being sufficiently large�.

In addition to change the b exponent of the magnitude-
frequency distribution, relaxation generates nontrivial corre-
lations in the spatial and temporal event distributions. We
will see now that this clustering has features that are known
to correspond to real earthquakes. First of all, it is qualita-
tively seen in Fig. 3 that events accumulate following large

FIG. 1. �Color online� �a� Magnitude-frequency distribution in
the absence of relaxation �R=0� and for different parameters, as
indicated. Continuous line has a slope b=0.37, for reference. The
large size cutoff is mainly controlled by �, moving to infinity for
�→�c=0.25. There are no important finite-size effects in these
results, as the system size �L
L=200
200� is much larger than
the largest event that is observed to occur for each value of �. �b�
Magnitude vs time plot and �c� projected position �along x axis� vs
time of epicenters of events with M �0.9, for the case �=0.2499,
�=1. Symbols’ size and color are magnitude dependent, according
to the legend. No obvious sign of temporal or spatial correlation is
observed.

FIG. 2. �Color online� �a� Magnitude-frequency distribution for
increasing relaxation and for �=0.246, �=1, and L=200. In the
inset, the b values extracted from the main panel are plotted as
a function of R /V, showing a convergence to a well defined value
for large R /V. Panel �b� shows the independence of the b value
on � and � and the progressive increase of the large size cutoff as
�→�c=0.25. Continuous line has slope b=1.
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ones and that the epicenters of the clustered events occur
close to the epicenter of the large shock. This reproduces
well-known features of real aftershocks. In order to provide a
more quantitative characterization of aftershocks in the
model, in Fig. 4�a� I show the result of calculated histograms
of events occurred around main shocks. For this analysis, a
main shock is operationally defined as any event having M
�3.0 �this corresponds to events producing a rupture region
of linear size about 60 lattice sites�. Time is set to zero at the
main shock. Different curves are presented, which corre-
spond to events occurring within a given spatial distance d
from the main shock epicenter. Curves are normalized in
such a way that N�t→��=1. The overabundance of events
following large ones is clear. There is also some overabun-
dance of events preceding large ones �foreshocks�, but in a
much lesser extent than the case of aftershocks. In order to
compare to an Omori expression, in Fig. 4�b� I plot the evo-
lution of the activity after the main shock, in logarithmic
scale, and use different lower cutoff values to define after-
shocks. Curves are compatible with an Omori law, but we
see that the activity soon becomes masked by the back-
ground activity, rendering a quantitative determination of pa-
rameters in the Omori expression very unconstrained. �Be-
low, we will see a trick to avoid this problem.� In addition,
we see that the convergence toward the background activity
is not monotonous, instead a time window of lower-than-
average activity �at times around 0.05 /R� is observed.

In order to analyze quantitatively the spatial clustering of
aftershocks, in Fig. 4�c� I present histograms of activity in
the system for different time windows after the main shock
as a function of the distance to the main shock epicenter. It is
observed that in very short times after the main shock, after-
shocks occur rather uniformly in a region of size comparable
to the rupture region of the main shock and fewer events are
observed at larger distances. When we consider later after-
shocks, the spatial distribution clearly drifts away of the
main shock epicenter. This is in nice agreement with the
observed behavior of actual seismicity patterns. The lower-
than-average activity region indicated in �b� is seen here �lat-
est curve in �c�� to be due to the eventual appearance of a
region of depleted activity �with respect to its spatial aver-
age� close to the main shock epicenter.

A complementary, more visual example of aftershocks
spatial distribution is presented in Fig. 5. There, I show the

actual region that was broken by a particular main shock and
the activity following this event. Squares, circles, and tri-
angles correspond to three time windows of progressively
later events, as indicated in the legend �t=0 at the main
shock�. Size of the symbol increases with magnitude. In this
example, we see again that aftershock activity starts mainly
within the region broken by the main shock and then pro-
gressively drifts away.

In the previous analysis, the aftershock statistics is limited
by the fact that tectonic loading continues to trigger events in
the system that rapidly mask the aftershock tail of previous
main shocks. However, a numerical trick can be imple-
mented to overcome this problem in order to study after-
shocks in more details. Along a simulation, once a main
shock is detected, I stop tectonic loading �i.e., setting V=0�
and look for the aftershock occurrence. The process is re-
peated many times to accumulate good statistics. The result
is shown in Fig. 6. Now we can follow the aftershock decay

FIG. 3. �Color online� �a� Magnitude-time plot and �b� projected
position �along x axis� vs time of epicenters of events with M
�1.5, for the case R /V=20, �=0.246, �=1. Temporal and spatial
clusterings are apparent.

FIG. 4. �Color online� �a� Aftershocks and foreshocks in the
model with parameters R /V=20, �=0.244, �=1, and system size
200
200. I show the accumulated histogram N�t� of events occur-
ring at time t with respect to the large event �I consider about 200
large events, with magnitude M �3.0, with relative spatial distance
of epicenters smaller than the cut off value d�. The histogram is
normalized to the corresponding totally random situation �this
means that N�t→��=1�. The accumulation of events following the
large ones �aftershocks� is clearly visible. Foreshocks are observed
but in a much lesser extent. �b� Activity in the whole system fol-
lowing main shocks, in logarithmic scale. For comparison, an
Omori expression a / �t+c�p �with a=0.035, c=0.001, p=0.8� is also
plotted as a continuous line. �c� Activity after main events, as a
function of the distance to main shock epicenter d, for different time
windows after the main event, as indicated. The typical radius of
regions broken by the main shock is indicated by the vertical dotted
line. A drift away from the main shock epicenter of later time af-
tershocks is clearly visible.
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rate for few orders of magnitude in time. It is seen that a very
good power-law �Omori-like� decay is obtained with a p ex-
ponent around 1.1. I notice however that at short times after
the main shock, some overabundance of events with respect
to the asymptotic rate is observed. This can be interpreted as
a larger p value if the aftershock sequence is observed in a
limited time interval.

It is necessary to mention here that aftershocks of a very
peculiar type have been found in the original OFC model
�24�. In my view, these aftershocks reflect once more the
kind of synchronization that the OFC model is prone to and
have nothing to do with aftershocks observed in real seismic-
ity. In particular, they completely disappear once a random-
ness in the thresholds of about 5% is included �25�, indicat-
ing that they are not a robust property. Also, their existence
depends exclusively on external loading, i.e., if at some mo-
ment the external driving vanishes, seismic activity ceases
immediately. Namely, the plot equivalent to that in Fig. 6 for
the OFC model would be completely void.

In addition to generate a realistic b value and produce
clustering effects, structural relaxation generates global fric-
tional properties that are comparable to what is observed in

laboratory experiments of friction between solids. I refer in
particular to the so-called velocity-weakening properties of
the friction phenomenon �8,13� and in general to the phe-
nomenology given by rate-and-state equations �14�, widely
used in seismological analysis. Velocity weakening means
that the average friction force F between the sliding bodies
decreases as a function of relative sliding velocity. In the BK
model, this behavior has to be introduced by hand in the
form of a tailored friction law between blocks and substrate.
The OFC model, on the other hand, can be considered to
generate a friction force �which is obtained in this case as the
spatial and temporal average of the local friction forces ui�
that is independent of sliding velocity, since sliding velocity
plays no role in the dynamics of the system, as earthquakes
are assumed to be instantaneous. But in the present model,
the interplay between structural relaxation and the external
driving velocity generates a friction force F that depends on
velocity. This dependence is of the velocity-weakening type,
as can be seen in the results in Fig. 7�a�. The decrease of
friction force with velocity is mainly logarithmic in about 3
orders of magnitude of velocity variation, quite comparable
to the experimental results in Ref. �13�. The increase of fric-
tion force as velocity is reduced can be qualitatively under-
stood if we consider that at lower velocities, the system has
more time to reach more stable configurations �with lower
energies�. Thus, larger forces have to be applied in order to,
eventually, take out the system from these configurations and
this means a larger friction force.

Another effect that the present model reproduces is the
stress relaxation that is observed after loading is stopped in
laboratory friction experiments �13�. We have already seen
that in the present model, activity decays slowly after tec-

FIG. 5. �Color online� In gray, the broken region of a particular
main shock. Symbols are the epicenters of events following the
main shock. Symbol size depends on magnitude and symbol type
indicates different time windows after the main shock. The figure
displays a system of size 200
200 and parameters are �=0.244,
R /V=20, and �=1.

FIG. 6. �Color online� Aftershock decay rate in simulations in
which tectonic loading is stopped �V=0� after a main shock has
occurred �parameters as in Fig. 4�. The asymptotic form of the
decay follows nicely an Omori decay �for reference, the continuous
lines has a slope of 1.1�. Different curves correspond to different
lower cutoff values M0 used to count aftershocks.

(a)

(b)

FIG. 7. �Color online� �a� Average friction force F as a function
of velocity in a system of size 200
200 sites and other parameters
as indicated. Velocity weakening following an approximately loga-
rithmic dependence on velocity is clearly observed. �b� Results of
three individual realizations for the stress decay in a system of size
200
200 �R /V=20, �=0.244, �=1� after the abrupt stopping of
loading at some arbitrary time �set to zero�.
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tonic loading is stopped and this produces a stress relaxation
that follows an almost logarithmic trend. In fact, in Fig. 7�b�,
we see examples of the stress decay after stopping loading,
where the effect of individual large aftershocks is seen as
abrupt stress drops.

IV. DEPENDENCES ON THE RELAXATION MECHANISM

The use of a conserving form of Eq. �1�, i.e., the inclusion
of the Laplacian operator, instead of a nonconserving form of
the kind du /dt=−�E /�u is difficult to justify on first prin-
ciples. One possible a posteriori justification is that a non-
conserving dynamics produces, in the absence of tectonic
loading, the evolution of the system toward a state with ui
=0 everywhere, i.e., a stress-free state. In particular, the al-
most logarithmic stress decay obtained in the last section
would not occur, instead we would observe an exponential
decay toward zero stress. This is not a realistic situation for
the present problem, although it could possibly be appropri-
ate to model a viscoelastic response. The necessary require-
ment to have a system that is able to maintain a constant
stress under static conditions is that relaxation does not
modify the spatial average ū of ui. Equation �2� certainly
satisfies this requirement, but other forms are possible. I
compare in this section some of the results obtained using
Eq. �2� with two other possibilities for the relaxation mecha-
nism, namely,

dui

dt
= − R�ui − ū� + V , �3�

dui

dt
= − R��4u�i + V �4�

�I use the same symbol R for the relaxation parameter in all
cases, although its numerical value may differ�. Both Eqs. �3�
and �4� do not modify the spatial average ū of the ui vari-
ables. Equation �3� is a sort of “mean-field” implementation
of the relaxation mechanism. It is not a realistic possibility in
a physical system with local interactions, but is an interesting
case of study to compare to. Equation �4� incorporates a
double Laplacian to drive the temporal variations of ui. I will
consider this to be simply another formal possibility, al-
though it can be given a more physical justification by de-
riving the present model as a limit of an elastic spring block
model in the presence of relaxation �see Ref. �21��. Now I
will present a comparison of the results obtained using Eqs.
�2�–�4�.

First of all, the three implementations produce a modifi-
cation of the b exponent of the GR decay, which tends to a
conserved value when R /V is large enough, in the three
cases. The conserved value is within the range 0.9–1.1 in the
three cases. This can be seen in Fig. 8, where I present the
magnitude-frequency distribution for the three mechanisms
for a rather large value of R /V �so the b value has already
reached its asymptotic value�.

The other comparison refers to the asymptotic decay of
aftershocks. In Fig. 9, we observe the aftershock activity
�using the prescription of stopping tectonic loading� after

main shocks. There is a clear difference in aftershock behav-
ior for the mean-field case of Eq. �3�. In this case, the after-
shocks activity decays exponentially with time. On the other
hand, the difference between the behaviors using Eq. �2� and
�4� is more subtle. I already indicated that using Eq. �2�, an
overabundance of aftershocks at small times is observed be-
fore an Omori decay �with p�1.1� is observed. For the bi-
Laplacian relaxation, the aftershock excess is much less pro-
nounced and an almost perfect Omori law with p�1.25 is
observed in this case. The results in this section indicate that
some qualitative features of the model are robust upon a
change of the relaxation mechanism, although differences in
the details can be expected.

V. FURTHER ANALYSIS AND CONCLUSIONS

Finally, in order to clarify the origin of aftershocks in the
model, we can make an analysis of the limiting case in which
V /R→0. This case can be realized in the following way. We

FIG. 8. �Color online� Magnitude-frequency distribution ob-
tained with the three different relaxation mechanisms proposed in
text, for R /V=20, �=0.246, and �=1 in all cases �curves are not
normalized and were vertically displaced for better comparison�.
The value of b for the three mechanisms is within a range of 0.9
�b�1.1, close to experimentally observed values. The two limit-
ing slopes are plotted as continuous lines for reference.

FIG. 9. �Color online� Time decay of aftershocks in a 200

200 system in the case in which loading is stopped after a main
shock is detected. The three curves correspond to the three different
realizations of the relaxation mechanism. The curve corresponding
to Eq. �3� is plotted in a different scale in the inset to highlight an
exponential decay of aftershocks in this case.
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set temporarily V to zero and allow only the evolution given
by the relaxation term in Eq. �2�. This evolution is continued
until we can guarantee that no other event will be triggered
by the relaxation alone. At this point, the values of ui can be
set everywhere equal to their mean value and this flat inter-
face can be driven by the external velocity V until a new
instability occurs. In this limit, a precise distinction between
main shocks and aftershocks can be given: aftershocks are
events that are triggered by the term proportional to R in Eq.
�2�, while main shocks are triggered by V �note that in this
case, main shocks are not defined in terms of their intensity,
in fact, it can occur that a main shock produces an aftershock
of larger magnitude that the starting event�. The mechanism
of aftershock triggering is illustrated in this limit in Fig. 10.
In order for the relaxation to be able to trigger events by
itself, the thresholds cannot be uniform since in that case,
starting with ui�1 after a given event, evolution through Eq.
�2� with V=0 cannot produce any ui�1. However, if thresh-
olds have some randomness, the evolution according to Eq.
�2� with V=0 can produce ui�ui

th at some position �particu-
larly at those with the smallest thresholds� and an aftershock
is triggered. This highlights the crucial role played by a non-
uniform distribution of thresholds in the appearance of after-
shocks. It is thus not surprising that aftershocks are observed
only if the distribution of thresholds has a dispersion � larger
than some minimum value that turns out to be about 0.25.

Summarizing, I have presented a model that is based on
the one proposed by Olami, Feder, and Christensen �6� to
study the dynamical appearance of slip events between tec-
tonic plates. Modifications consider the existence of random
thresholds and the possibility of relaxation in the system.
Relaxation acts trying to strengthen the contact between the
sliding surfaces if they remain at rest relative to each other.
When the surfaces slip, the contacts refreshen and there is a
competence between the relaxation mechanism and the ex-
ternal driving of the system. With this kind of modification, I
have been able to generate earthquake sequences that contain
many of the features observed in real seismicity. In particu-
lar, I have presented results of temporal clustering of events
following a main shock according to the Omori law and
spatial clustering of these events around the epicenter of the
main shock. Also, an appropriate decay of number of events
as a function of magnitude according to the Gutenberg-
Richter law, with a realistic b exponent, has been obtained

and the value of b was shown to be independent of other
parameters of the model, relaxation assumed to be suffi-
ciently large. Although the present model does not introduce
velocity weakening directly, this effect appears as a conse-
quence of structural relaxation. In this way, the model gives
also a physical basis for the rate-and-state equations used to
describe frictional properties of solids.
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